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Abstract. We investigate the one-triplet dispersion in a modified Shastry–Sutherland model
for SrCu2(BO3)2 by means of a series expansion about the limit of strong dimerization. Our
perturbative method is based on a continuous unitary transformation that maps the original
Hamiltonian to an effective, energy-quanta-conserving block diagonal Hamiltonian Heff . The
dispersion splits into two branches which are nearly degenerate. We analyse the symmetries of
the model and show that space group operations are necessary to explain the degeneracy of the
dispersion at k = 0 and at the border of the magnetic Brillouin zone. Moreover, we investigate the
behaviour of the dispersion for small |k| and compare our results to inelastic neutron scattering data.

1. Introduction

The study of quantum spin systems exhibiting a finite spin gap has advanced significantly
through the recent synthesis of novel magnetic materials. While quasi-one-dimensional
systems have been studied for a long time now, new interest arose from the discovery of
new quasi-two-dimensional materials like CaV4O9 [1] and (VO2)P2O7 [2]. Particularly
interesting is SrCu2(BO3)2 [3], since it is an experimental realization of the Shastry–Sutherland
model [4, 5]. In reference [6] we presented an extended version of that model (figure 1) and
deduced its T = 0 phase diagram in the model parameter space.

The Hamiltonian is given by

H = J1

∑
〈i,j〉

�Si · �Sj︸ ︷︷ ︸
H0

+ J2

∑
〈i,k〉

�Si · �Sk︸ ︷︷ ︸
H1

+ J3

∑
〈i,l〉

�Si · �Sl︸ ︷︷ ︸
H2

(1)

where the bonds corresponding to interactions J1, J2 and J3 are shown in figure 1. For J3 = 0
the model reduces to the original Shastry–Sutherland model.

It can be easily verified that the singlet–dimer state (singlets on all strong bonds J1,
henceforth called dimers) is an exact eigenstate of our model: a single spin interacts via J2

and J3 with S = 0 objects only. Thus the corresponding terms in Hamiltonian (1) do not
contribute. The remaining expression simply gives −(3/8)J1 per spin. This article focuses
on the region where the singlet–dimer state is the ground state, called the dimer phase. In this
phase a single excitation (magnon) is introduced by breaking up one singlet and substituting

† Internet: www.thp.uni-koeln.de/˜ck/.
‡ Internet: www.thp.uni-koeln.de/˜gu/.
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Figure 1. A portion of the lattice that we suggest for SrCu2(BO3)2. The coupling J1 is assumed
to be antiferromagnetic. The starting point of our analysis is the limit of strong dimerization
(J2, J3 → 0).

one triplet instead (the triplet’s z-component is irrelevant). By hopping from dimer to dimer
this triplet acquires a dispersion, which we intend to calculate. It suffices to do the calculations
on an effective square lattice �eff , where one site represents one dimer. Note that �eff has a
sublattice structure A/B, where A (B) corresponds to vertical (horizontal) dimers.

We derive a power series expansion about the limit of strong dimerization (J2, J3 → 0)
for the one-magnon dispersion. By fitting the expansion to INS data obtained by Kageyama
et al [7] we deduce model parameters which show good agreement with parameters previously
determined [8].

The next section gives a short introduction to the method used. Before we calculate and
discuss the one-magnon dispersion (section 4) we use some of the model’s symmetries to
derive interesting and useful relations between various hopping amplitudes (section 3).

2. Method and qualitative pictures

The one-magnon dispersion is calculated perturbatively about the limit of isolated dimers using
the flow equation method introduced previously [9]. Given a perturbation problem that can be
formulated in the standard way:

H = H0 + xHS (2)

this method in its present formulation relies only on two further prerequisites:

(A) The unperturbed Hamiltonian H0 must have an equidistant spectrum bounded from below.
The difference between two successive levels is called an energy quantum.

(B) There is a number N � N > 0 such that the perturbing Hamiltonian HS can be written as
HS = ∑N

n=−N Tn where Tn increments (or decrements, if n < 0) the number of energy
quanta by n.
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The flow equation method maps the perturbed Hamiltonian H by a continuous unitary
transformation to an effective Hamiltonian Heff , which conserves the number of energy quanta,
i.e. [Heff ,H0] = 0. Thus the effective Hamiltonian is block diagonal and has the form

Heff = H0 +
∞∑
k=1

xk
∑

|m|=k,M(m)=0

C(m)T (m) (3)

where m is a vector of dimension k whose components are in {±N,±(N − 1), . . . ± 1, 0};
M(m) = 0 signifies that the sum of the components vanishes, which reflects the conservation
of the number of energy quanta. The operator product T (m) is defined by Tm = Tm1Tm2 · · · Tmk

,
where k is the order of the process. The coefficients C(m) are generally valid fractions, which
we computed up to order k = 15 forN = 1 and up to order k = 10 forN = 2 (cf. reference [9]).

We want to emphasize that the effective Hamiltonian Heff with known coefficients C(m)

can be used straightforwardly in all perturbative problems that meet conditions (A) and (B).
The interested reader can find the C(m) and additional information on our homepages. For
checking purposes we tested the C(m) by applying the method to toy models. In the N = 1
case, for instance, we considered the one-dimensional harmonic oscillator perturbed by itself
and an additional linear potential. Thus, with h̄ω = 1,

H0 = 1

2
(P 2 + X2) = a†a +

1

2
(4)

HS = 1

2
(P 2 + X2) + X = a†a +

1

2︸ ︷︷ ︸
T0

+
1√
2
a†

︸ ︷︷ ︸
T1

+
1√
2
a︸ ︷︷ ︸

T−1

. (5)

In this case equation (2) can be solved exactly to give

En = (1 + x)

(
n +

1

2

)
− 1

2

x2

1 + x
. (6)

We expand this last equation about x = 0 and obtain

En = n +
1

2
+

1

2
(2n + 1)x − 1

2

∞∑
i=2

(−1)ixi . (7)

By inserting the Ti defined in equation (5) in the effective Hamiltonian (3) and calculating
〈n|Heff |n〉 with n ∈ N we retain equation (7) exactly up to 15th order.

We now show that Hamiltonian (1) meets conditions (A) and (B) for N = 1. To this end
we rewrite equation (1):

H

J1
= H0 + xHS (8)

with

HS = H1 +
y

x
H2 x = J2

J1
y = J3

J1
. (9)

In the limit of isolated dimers (x = 0, with y/x finite), H is bounded from below and has
an equidistant energy spectrum since up to a trivial constant H0 simply counts the number of
excited dimers, i.e. energy quanta.

To decompose HS we follow the same procedure as in reference [9] and state the result:

HS = T−1 + T0 + T1 (10)
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with

T±1 = 1

2

(
1 − y

x

) ∑
ν

T±1(ν) (11)

T0 = 1

2

(
1 +

y

x

) ∑
ν

T0(ν) (12)

where ν denotes the pairs of adjacent dimers. For some fixed ν we encounter the pair depicted
in figure 2, the state of which is determined by |x1, x2〉, where x1, x2 ∈ {s, t1, t0, t−1} are
singlets or one of the triplets occupying the vertical (horizontal) dimer, respectively. The
superscript n ∈ {0,±1} in tn stands for the Sz-component. For the pair |x1, x2〉 we give the
action of the local operators Ti in table 1.

y

y

1

x

x

Figure 2. A pair of adjacent dimers (intra-dimer coupling constant set to unity) connected by the
perturbing interactions x and y. The local operators Ti as defined in table 1 acquire a global minus,
if we reflect the pair on the axis indicated and keep the notation |x1, x2〉 as defined in the text. This
is due to the singlet antisymmetry under reflection.

Table 1. The action of the local operators T0 and T1 as they appear in equations (11), (12) on
all relevant states of the dimer pair depicted in figure 2. These operators conserve the total Sz-
component. Note that T1 can only create another triplet on the horizontal dimer if one already
exists on the vertical dimer. This has also been noticed in reference [10]. Possible T±2-operators
cancel out due to the inherent frustration of the lattice. Matrix elements not listed are zero.

T0

|t±1, t±1〉 −→ |t±1, t±1〉
|t±1, t0〉 −→ |t0, t±1〉
|t±1, t∓1〉 −→ |t0, t0〉 − |t±1, t∓1〉
|t0, t0〉 −→ |t1, t−1〉 + |t−1, t1〉
|t0, t±1〉 −→ |t±1, t0〉
T1

|t±1, s〉 −→ ∓|t0, t±1〉 ± |t±1, t0〉
|t0, s〉 −→ |t1, t−1〉 − |t−1, t1〉

The remaining matrix elements can be constructed by using T †
n = T−n. Note that we

need to fix the orientation for singlets, say spin up with positive sign always at the right-hand
(upper) site of the dimers. Hence T1 and T−1 acquire a global minus for oppositely oriented
dimer pairs (reflection of the dimer pair in figure 2 about the vertical dimer).
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Instead of Hamiltonian (1) we can now use the effective Hamiltonian Heff (equation (3))
with the Ti defined in equations (11), (12). The effective Hamiltonian (3) simplifies the
computations considerably. Since [Heff ,H0] = 0, Heff is block diagonal allowing triplet-
conserving processes only. Thus the effective Hamiltonian acts in a much smaller Hilbert
space than the original problem, which is a great advantage in the numerical implementation.

In addition to this simplification, the explicit form of Heff provides a simple and
comprehensive picture of the physics involved. Imagine we were to put a triplet on one of the
dimers in the lattice. In the real substance this local excitation would polarize its environment
due to the exchange couplings and must be viewed as a dressed quasi-particle surrounded by a
cloud of virtual excitations fluctuating in space and time. The effective Hamiltonian includes
these fluctuations as virtual processes T (m), each weighted by the factor C(m). Each process
ends with a state having the same number of triplets as the initial state. Other quantum numbers
such as the total spin are also conserved. As the order k is increased, more and longer processes
are allowed for and the accuracy of the results will be enhanced. Inspecting the weight factors
C(m) shows that longer processes have less influence.

Let us follow one of the possible virtual processes and understand why the observed triplet
dispersion of SrCu2(BO3)2 is rather flat (cf. figure 8, later). Suppose we begin with one triplet
in the lattice as depicted in the upper left-hand corner of figure 3.

x

x x x

x x   process !6

x

Figure 3. The leading (virtual) process for one-triplet hopping corresponding to x6T (m) =
x6T−1T−1T−1T1T1T1. Dark dots are triplets, bars are dimers. There is no lower-order process
leading to one-triplet motion.

By applying T1 once we can create another triplet only on one of the two horizontally
adjacent dimers as is clear from table 1 and figure 2. From there we might create another
one and so on until we can close a circle (bottom left-hand state in figure 3). We now start
destroying triplets by T−1-processes and end up with the shifted triplet. The amplitude for
this hopping is ∝ x6. It is the largest amplitude that one can find (see also reference [10]).
Therefore the triplets are rather localized, leading to a flat dispersion.

Note that the T1-processes (T−1-processes) are proportional to (x−y) (see equation (11)).
So, the leading triplet motion is O((x − y)6) in leading order. Even local processes (without
hopping) include at least two T1-processes (T−1-processes). Hence all perturbative amplitudes
are at least of order (x − y)2. We will make use of this fact later on.

Examining the two-triplet sector [8] we showed that correlated hopping processes occur
in second order already. The actual dispersion, however, sets in only in third order. This much
lower order (x3 instead of x6) explains the much stronger two-magnon dispersion [7].

To quantify the picture constructed let |r〉 = |r1, r2〉 denote the state of the system with
one triplet at r ∈ �eff and singlets on all other sites. The amplitude t

o(r)
r′−r for a triplet hopping
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from site r to site r′ is given by

t
o(r)
r′−r = 〈r′|Heff |r〉 (13)

where the upper index o(r) ∈ {v, h} allows one to distinguish whether the hopping started on
a vertically oriented (v) or a horizontally oriented dimer (h). Furthermore we choose to split
the hopping amplitudes into an average part t̄s and an alternating part dts (s = r′ − r):

to(r)s = t̄s + eiQ·r dts (14)

with Q = (π, π).
The right-hand side of equation (13) can be easily implemented on a computer. For details

see reference [9]. We want to point out, however, that all computations are done symbolically,
i.e. we obtain results as functions (polynomials) of all model parameters.

3. Symmetries

Before we calculate the one-triplet dispersion quantitatively in the next section, it is worthwhile
to look at the symmetries that the model in figure 1 displays. The two-dimensional space group
of the model can be identified to be p4mm with the underlying point group 4mm as can be
verified in figure 4.

glide line

4-fold axis

2-fold axis

mirror line
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Figure 4. A possible unit cell of the Shastry–Sutherland model with the dimers arranged at the
sides of the cell. All symmetries are depicted. The two-dimensional crystallographic space group
is p4mm.

We will not treat all symmetry aspects but concentrate on those that will be of use later
on. We choose the coordinate system parallel to the dimers such that one dimer (horizontal or
vertical) lies in the origin and introduce two diagonals u and v crossing the origin with slope
−1 and 1, respectively. The distance between the centres of two adjacent dimers is set to unity.

Several relations between different hopping amplitudes can be deduced. To this end we
define six symmetry operations which map the lattice onto itself. Note that the fixed singlet
orientation can lead to negative phase factors.

• mx/y : reflection about the x/y-axis:

mx/y |r1, r2〉 = (−1)r1+r2 |±r1,∓r2〉.
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• I : inversion about the origin:

I |r1, r2〉 = |−r1,−r2〉.
• σv/u: reflection about the diagonals v/u plus translation by (0,−1):

σv/u|r1, r2〉 = |±r2,±r1 − 1〉.
• R: rotation of π/2 about the origin plus translation by (0,−1):

R|r1, r2〉 = (−1)r1+r2 |−r2, r1 − 1〉.
Since these operations leave H unchanged they all commute with Heff . Applying mx to

equation (13) we find

t
o(r)
r′−r = (−1)r

′
1+r ′

2〈r ′
1,−r ′

2|mxHeff |r1, r2〉 = (−1)r1+r2+r ′
1+r ′

2〈r ′
1,−r ′

2|Heff |r1,−r2〉
= (−1)r1+r2+r ′

1+r ′
2 t

o(r)
(r ′

1,−r ′
2)−(r1,−r2)

(15)

or simply

to(r)s = (−1)s1+s2 t
o(r)
s1,−s2

. (16)

Analogously using my , I , σu, σv and R we find

to(r)s = (−1)s1+s2 t
o(r)
−s1,s2

(17)

= t
o(r)
−s (18)

= t
o(r−(0,1))
−s2,−s1

(19)

= to(r−(0,1))
s2,s1

(20)

= (−1)s1+s2 t
o(r−(0,1))
−s2,s1

(21)

respectively. In particular equations (17) and (18) yield together

t
o(r)
(−s1,0)

= (−1)s1t
o(r)
(s1,0) = t

o(r)
(s1,0) ⇒ t

o(r)
(s1,0)

= 0 if s1 is odd (22)

and analogously

t
o(r)
(−s1,0)

= (−1)s1t
o(r)
(s1,0) = t

o(r)
(s1,0) ⇒ t

o(r)
(0,s2)

= 0 if s2 is odd (23)

describing the interesting fact that hopping along the axis has non-zero amplitude only if this
hopping moves the triplet an even number of sites (�eff ).

4. Dispersion

Since Heff conserves the number of triplets, the one-triplet dispersion is particularly easy to
calculate. Starting with one triplet this excitation can only be shifted, i.e. the triplet hops on
the effective lattice �eff . Additional care has to be taken to account for the sublattice structure
of �eff . From equation (13) we get

Heff |r〉 =
∑

r

′
t
o(r)
r′ |r + r′〉. (24)

We introduce Fourier-transformed states:

|σ,k〉 = 1√
L

∑
r

|r〉ei(k+σQ)·r (25)
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with the number of dimers L, the new quantum number σ ∈ {0, 1} reflecting the sublattice
structure and k a vector in the magnetic Brillouin zone (MBZ). Calculating the action of
Heff |σ,k〉 on these states yields

Heff |σ,k〉 = 1√
L

∑
r,r′

(t̄r′ + eiQ·r dt ′r)|r + r′〉ei(k+σQ)·r

=
∑

r

′
t̄r′e−i(k+σQ)·r′ 1√

L

∑
r

|r〉ei(k+σQ)·r

︸ ︷︷ ︸
|σ,k〉

+
∑

r

′
dtr′ e−i(k+σ̄Q)·r′ 1√

L

∑
r

|r + r′〉ei(k+σ̄Q)·(r+r′)

︸ ︷︷ ︸
|σ̄ ,k〉

(26)

with σ̄ = 1 − σ . We used the definitions (13) and (14). Further, since equation (18) holds for
even and odd r1 + r2, one has t̄s = t̄−s and dts = dt−s. Thus we can simplify the sums over r′

in equation (26) to give

Heff |σ,k〉 =
[
t̄0 + 2

∑
r>0

t̄r cos((k + σQ) · r)

]
︸ ︷︷ ︸

aσ

|σ,k〉

+

[
dt0 + 2

∑
r>0

dtr cos((k + σ̄Q) · r)

]
︸ ︷︷ ︸

b

|σ̄ ,k〉 (27)

with r > 0 if and only if (r1 > 0 or r1 = 0 but r2 > 0). In appendix A we show that dt0 = 0
and dtr = 0 for r1 + r2 odd. Hence b does not depend on σ̄ :

b = 2
∑
r>0

r1+r2 even

dtr cos(k · r) (28)

and Heff is symmetric in the new states. The remaining 2 × 2 problem can be solved easily to
give the dispersion:

ω1/2(k) = a0 + a1

2︸ ︷︷ ︸
ω0(k)

± 1

2

√
(a0 − a1)2 + 4b2. (29)

Thus the one-triplet dispersion splits into two branches. We want to point out, however, that
at k = 0 and at the borders of the MBZ (i.e. |kx + ky | = π or |ky − kx | = π ) the two branches
fall onto each other leading to a twofold-degenerate dispersion. An analogous degeneracy is
noticed in the two-triplet sector [8]. In appendix B we demonstrate that the degeneracy is due
to the glide line symmetries R and σu/v and show that (a0 − a1) and b both vanish. Moreover,
(a0 + a1) is a sum over r with r1 + r2 even and thus contains ‘even’ hopping amplitudes only.
At k = 0 and at the border of the MBZ we therefore find that one-triplet hopping takes place
on one species of the two sublattices A/B in �eff only. In other words, the triplets live either
on the horizontal or on the vertical dimers.

We calculated the amplitudes t̄r and dtr (and therefore the dispersion) as exact polynomials
in x and y up to and including 15th order. On appearance of this article these polynomials will
be published in electronic form on our homepages.

Expanding the square root in equation (29) about the limit of vanishing x and y produces
terms ∝ xαyβ with α + β � 10. Hence the energy splitting starts in the tenth order and is
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negligible for all reasonable values of x and y. The fact that the splitting starts four orders
later than the dispersion may be understood by observing that (a0 − a1) is a sum over r with
r1 + r2 odd. From the discussion at the end of section 3 it is clear that t

o(r)
±1,0 and t

o(r)
0,±1 vanish,

with the result that the leading ‘odd’ process is t
o(r)
±2,±1 or t

o(r)
±1,±2, which start in tenth order

only. One may object that b contains dt1,1, which could be larger, but from relation (A.5) in
appendix A it follows that dt1,1 = 0. The amplitudes dt±2,0 and dt0,±2 in b also start in tenth
order only. Hence the near degeneracy in the one-triplet sector can be understood on the basis
of the symmetries of the lattice.

By substituting y = 0 in ω0(k) we obtain the decimal numbers computed by Zheng
et al [11]. Our series expansion for the dispersion (29) converges nicely but it can be improved
further by the use of D–log Padé approximants [12].

Let us first consider the energy gap 0 := ω(0, 0) as a function of x and y. We fix the
ratio of x and y and use D–log Padé approximants to extrapolate the remaining expression.
For all x/y ratios that we tested, we find the approximants to be very stable, i.e. most of the
possible approximants at a fixed ratio coincide very well. (Some are defective, i.e. they show
spurious singularities.) Figure 5 shows D–log Padé extrapolations for y = −x tan(π/6) and
y = −x tan(π/8). In reference [6] we used this technique to determine the line in the (x, y)
plane where the gap 0 vanishes. The vanishing of 0 indicates definitively the breakdown of the
dimer phase. But it may happen that another excitation becomes soft before the elementary
triplet vanishes (cf. reference [8]) or that a first-order transition takes place [8, 13]. In the
present work we choose to examine the elementary triplet only.

0.00 0.20 0.40 0.60
x

0.0

0.5

1.0

∆/
J 1

DPade[7,7]
DPade[8,6]
DPade[6,8]

y=−x tan(  /8)

y=−x tan(  /6)

π

π

Figure 5. D–log Padé extrapolations of the gap along two lines in the (x, y) plane. Different
approximants for a fixed ratio coincide very well. The (x, y) values where the gap vanishes
constitute a line in the (x, y) plane indicating the definitive collapse of the dimer phase (cf. figure 2
in reference [6]).

For y = −x tan(π/6) the gap vanishes at x = 0.558(1) (y = −0.323(1)). At this point
we get the lowest curve in figure 6 where we choose to show the dispersion along a triangle in
the MBZ.
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(0,0) (π,0) (π/2,π/2) (0,0)

0.1

0.2

0.3

0.4

0.5

0.6

ω
(k

)/
J 1

x=0.558

y=−0.13

y=−0.20

y=−0.27

y=−0.323

y=0

Figure 6. One-triplet dispersion in the MBZ at various points of the (x, y) plane. The lowest
curve shows ω(k) at the point where the gap vanishes. With increasing y the dispersion decreases
considerably, as is clear from (ω(π, 0) − ω(0, 0)) ∝ (x − y)6.

In section 2 we saw that all hopping amplitudes are proportional to (x − y)6. Since the
dispersion is a sum over these amplitudes it is clear that (ω(π, 0) − ω(0, 0)) ∝ (x − y)6.
Indeed, for increasing y we see that the dispersion decreases (figure 6). At x = y we find the
dispersion to be absolutely flat. This is a signature of the fact that at x = y the total spin on
each J1-bond is a conserved quantity [6]. Thus there will be no triplet motion.

We turn to the behaviour of the dispersion ω(k) for small |k| on the line in the (x, y) plane
where the gap vanishes. After fixing the ratio x/y in equation (29) and applying the D–log
Padé technique we end up with an expression

ω(x; k) = exp

[ ∫ x

0
A(k)

P (x; k)

Q(x; k)︸ ︷︷ ︸
f (x;k)

]
dx (30)

where A is a function of k and P and Q are polynomials in x (where the leading coefficient
is unity) of order M and N , respectively (shorthand: [M,N ] approximant). At k = 0 the
smallest positive zero of Q, say x0, is the point where the exponent diverges logarithmically
to −∞; hence ω(x0; 0) = 0. We set ky = 0 and will show that for small kx

ω(x0; kx) ∝ kα
x + higher orders. (31)

Differentiating ln ω yields for kx → 0

α = lim
kx→0

kx

∫ x0

0
∂kx

f (x; kx) dx. (32)

We decompose P and Q in linear factors:

P(x; kx) = (x − p1(kx))(x − p2(kx)) · · · (x − pM(kx)) (33)

Q(x; kx) = (x − q1(kx))(x − q2(kx)) · · · (x − qN(kx)) (34)
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such that q1(kx)|kx=0 = x0. In this way the factor (x − q1(kx)) dominates the behaviour of α

for small kx . Further, since the dispersion is invariant under the substitution kx → −kx we
have A,pi, qi ∝ k2

x for small kx . Thus we are led to write q1(kx) = x0 + βk2
x , with positive β.

With these preparations we rewrite equation (32):

α = lim
kx→0

kx

∫ x0

0

2βkx

(x −x0 − βk2
x︸ ︷︷ ︸

−q1

)2
g(x; kx) dx (35)

= lim
kx→0

2
∫ x0/(βk2

x )

0

g(x0 − βk2
x; kx)

(1 + y)2
dy (36)

where we substituted x = x0 −βk2
xy and g(x; k) for A(kx)P (x; kx)(x−q1)/Q(x; kx). Taking

the limit yields

α = 2g(x0; 0)
∫ ∞

0

1

(1 + y)2
dy = 2g(x0; 0). (37)

A straightforward calculation shows that

g(x0; 0) = A(0)
P (x0; 0)

∂xQ(x0, 0)
(38)

which we can easily calculate. Figure 7 shows the exponent α as function of the angle φ

measured from the positive x-axis to the negative y-axis.

0.00 0.10 0.20 0.30 0.40 0.50
φ/π

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

α

Figure 7. The exponent α in ω(kx) ∝ kα
x as a function of the angle φ between the x- and −y-axes.

There is only one ratio x/y for which α = 1. At this point the dispersion vanishes with
finite spin-wave velocity (φ ≈ 0.081(1) or x ≈ 0.679(1), y ≈ −0.055(1)).

Let us turn to a comparison of the theoretical dispersion to experimental data for
SrCu2(BO3)2. To fit the dispersion to the experimental data we make use of the parameter
dependence of our results by requiring the curves to go through certain points and solve the
resulting set of equations. At k = (0, 0), ESR [14], FIR [15] and INS [7] data suggest a value
of ω(0, 0) = 2.98 meV. At finite k we have to rely on the INS measurements, which contain
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rather large errors. In figure 8 we show the INS data (bullets and error bars) and two of our
fitted curves. For the parameter values given we get an excellent agreement.

Because of the flatness of the dispersion and the comparably large error bars, it is not
possible to fix the model parameters unambiguously. As sketched in figure 8 one can lower x

and enlarge J1 and |y| while maintaining reasonable agreement. On the basis of the one-triplet
dispersion, it is not possible to fix the model parameters quantitatively. Our investigation in the
two-triplet sector [8] (where y is disregarded, since it is probably not very important) enables
us to fix the parameters to the intervals (y = 0) x = 0.603(3) and J1 = 6.16(10) meV. The
corresponding one-triplet dispersion is the solid curve in figure 8.

(0,0) (π,0) (π/2,π/2) (0,0)
2.9

3.0

3.1

3.2

ω
/[m

eV
]

x=0.603, y=0,     J1=6.16meV
x=0.59,  y=−0.05, J1=6.67meV

Figure 8. One-triplet dispersion. Our theoretical results fitted to INS data (bullets, errors at least
as large as the error bars). Due to the large errors it is not possible to fit the model parameters
unambiguously.

5. Conclusions

In summary, we have demonstrated the utility of our perturbation method introduced earlier [9].
By the means of a continuous unitary transformation, the original Hamiltonian is mapped onto
a block diagonal, energy-quanta-conserving, effective Hamiltonian Heff . This allows to do the
calculations for different energy sectors separately.

Here we used this method to develop a picture of excitation processes in a model for
SrCu2(BO3)2 and calculated the series expansion of the one-magnon dispersion ω about the
limit of isolated dimers as a 15th-order polynomial in the model parameters.

We showed that the dispersion decomposes into two nearly degenerate branches with a
splitting proportional to x10. At k = 0 and at the border of the magnetic Brillouin zone the two
branches fall onto each other. By making use of our detailed analysis of the model symmetries
we showed that point group operations alone cannot explain these degeneracies. In fact we
showed that the model’s space group symmetries have to be taken into account.

Moreover we analysed the critical behaviour of ω for small |k| at various ratios of x and
y. It is found that the dispersion vanishes only for x ≈ 0.679(1) and y ≈ −0.055(1) with a
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finite spin velocity.
Finally, we fitted our dispersion to INS data obtained by Kageyama et al [7] and found that

it is not possible to fix the model parameters unambiguously from just the one-triplet data due
to very large experimental error bars. The parameter values determined by our investigations
in the two-triplet sector (reference [8]: y = 0, x = 0.603, J = 6.67 meV), however, lead to a
one-magnon dispersion agreeing nicely with the experimental findings.
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Appendix A

First we show that dtr = 0 if r1 = r2.
With equation (20) (the σv-symmetry) we have

to(r)s = to(r−(0,1))
s2,s1

. (A.1)

Splitting both sides according to equation (14) we get

t̄s + eiQ·r dts = t̄s2,s1 + eiQ·(r−(0,1)) dts2,s1 (A.2)

leading to

t̄s + dts = t̄s2,s1 − dts2,s1 for r even (A.3)

t̄s − dts = t̄s2,s1 + dts2,s1 for r odd. (A.4)

Taking the difference of the two equations yields

dts1,s2 = −dts2,s1 (A.5)

which proves the assertion. In particular dt0 = 0.
We now show that dtr = 0 if r1 + r2 is an odd number.
According to equation (13) we have

t
o(r)
r′ = 〈r + r′|Heff |r〉 = 〈r|Heff |r + r′〉 = t

o(r+r′)
−r′ = t

o(r+r′)
r′ (A.6)

since Heff has only real matrix elements in this basis (cf. equation (3)). The last equality
follows from equation (18). Splitting both sides according to equation (14) yields

t̄ ′r + eiQ·rdt ′r = ¯tr′ + eiQ·reiQ·r′
dt ′r ⇒ dt ′r = eiQ·r′

dt ′r ⇒ dt ′r = 0 for r ′
1 + r ′

2 odd. (A.7)

Appendix B. Degeneracy of ω

The dispersion (29) will be twofold degenerate if the square root vanishes. We will use the
shorthand r even/odd for r1 + r2 even/odd.
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B.1. k = 0

B.1.1. b
!= 0. For k = 0 equation (28) gives

b

2
=

∑
r>0

r even

dtr =
∑
r1=0
r2>0

r even

dtr +
∑
r1>0
r2=0

r even

dtr +
∑
r1>0
r2>0

r even

dtr +
∑
r1>0
r2<0

r even

dtr = I1 + I2 + I3 + I4. (B.1)

We rewrite the first and the third sum on the right-hand side of equation (B.1):

I1 =
∑
r1>0
r2=0

r even

dt−r2,r1 and I3 =
∑
r1>0
r2<0

r even

dt−r2,r1 . (B.2)

From equation (21) (the R-symmetry) we deduce

dtr1,r2 = −dt−r2,r1

and see that I1 = −I2 and I3 = −I4. Hence we find b = 0.

B.1.2. (a0 − a1)
!= 0. For k = 0 we have (cf. equation (27))

a0 − a1

2
=

∑
r>0

t̄r [1 − cos(π(r1 + r2))] = 2
∑
r>0
r odd

t̄r (B.3)

and, recalling that dtr = 0 for r odd, equation (21) yields

t̄r1,r2 = −t̄−r2,r1 (B.4)

so we can use the same splitting as in equation (B.1). Thus the energy degeneracy at k = 0 is
due to the rotational symmetry R as defined in section 3.

B.2. kx + ky = π

B.2.1. b
!= 0. Making use of dtr = dt−r, which follows from equation (18), we have for

ky = π − kx

b

4
=

∑
r

r even

dtr cos(kx(r1 − r2) + πr2) =
∑
r1,r2

r even

dtr2,r1 cos(kx(r2 − r1)) cos(πr1). (B.5)

In the last step we choose to rearrange the sum and observe that if r is even we have r1 and r2

both odd or both even. In both cases the identity

cos(πr1) = cos(πr2) (B.6)

holds. Inserting relation (A.5) in the last row of equation (B.5) we end up with

b

4
= −

∑
r

r even

dtr cos(kx(r1 − r2)) cos(πr2) (B.7)

resulting in b = −b and thus b = 0.
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B.2.2. (a0 − a1)
!= 0. Analogously to in subsection B.1.2, we have here

a0 − a1

4
=

∑
r

t̄r [cos(k · r) − cos(k · r + π(r1 + r2))] = 2
∑
r odd

t̄r cos(kx(r1 − r2) + πr2)

= 2
∑
r odd

t̄r2,r1 cos(kx(r2 − r1)) cos(πr1)

= − 2
∑
r odd

t̄r1,r2 cos(kx(r1 − r2)) cos(πr2) (B.8)

where the last but one equality follows from equation (20) (the σv-symmetry), i.e. t̄r1,r2 = t̄r2,r1 ,
and from the fact that if r is odd we have that r1 is odd and r2 even or r1 is even and r2 odd.
From that we see that cos(πr1) = − cos(πr2).

The degeneracy over the remaining three borders of the magnetic Brillouin zone can be
shown analogously. It is interesting to note that the calculations necessarily involved glide line
operations. The degeneracies can thus not be explained by considering point group symmetries
only.
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